C |
解法一:采取相似三角形法对小圆环A受力分析,如图所示,FT2与FN的合力与FT1平衡,由矢量三角形与几何三角形相似,
可知 得 解法二:采用正交分解法 建立如解法一中图所示的坐标系,可知:FT2=FN=m2g
解得 解法三:采用三力平衡的推论法 FT2与FN的合力与FT1平衡,则FT2与FN所构成的平行四边形为菱形,有 FT2=m2g,FT1=m1g 解得 |
为了把陷在泥泞中的汽车拉出来
第一讲 平衡问题
一、特别提示[解平衡问题几种常见方法]
1、力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到这两个分力必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。
2、力汇交原理:如果一个物体受三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必有共点力。
3、正交分解法:将各力分解到 轴上和 轴上,运用两坐标轴上的合力等于零的条件 多用于三个以上共点力作用下的物体的平衡。值得注意的是,对 、 方向选择时,尽可能使落在 、 轴上的力多;被分解的力尽可能是已知力。
4、矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法求得未知力。
5、对称法:利用物理学中存在的各种对称关系分析问题和处理问题的方法叫做对称法。在静力学中所研究对象有些具有对称性,模型的对称往往反映出物体或系统受力的对称性。解题中注意到这一点,会使解题过程简化。
6、正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。
7、相似三角形法:利用力的三角形和线段三角形相似。
二、典型例题
1、力学中的平衡:运动状态未发生改变,即 。表现:静止或匀速直线运动
(1)在重力、弹力、摩擦力作用下的平衡
例1 质量为 的物体置于动摩擦因数为 的水平面上,现对它施加一个拉力,使它做匀速直线运动,问拉力与水平方向成多大夹角时这个力最小?
解析 取物体为研究对象,物体受到重力 ,地面的支持力N,摩擦力 及拉力T四个力作用,如图1-1所示。
由于物体在水平面上滑动,则 ,将 和N合成,得到合力F,由图知F与 的夹角:
不管拉力T方向如何变化,F与水平方向的夹角 不变,即F为一个方向不发生改变的变力。这显然属于三力平衡中的动态平衡问题,由前面讨论知,当T与F互相垂直时,T有最小值,即当拉力与水平方向的夹角 时,使物体做匀速运动的拉力T最小。
(2)摩擦力在平衡问题中的表现
这类问题是指平衡的物体受到了包括摩擦力在内的力的作用。在共点力平衡中,当物体虽然静止但有运动趋势时,属于静摩擦力;当物体滑动时,属于动摩擦力。由于摩擦力的方向要随运动或运动趋势的方向的改变而改变,静摩擦力大小还可在一定范围内变动,因此包括摩擦力在内的平衡问题常常需要多讨论几种情况,要复杂一些。因此做这类题目时要注意两点
①由于静摩擦力的大小和方向都要随运动趋势的改变而改变,因此维持物体静止状态所需的外力允许有一定范围;又由于存在着最大静摩擦力,所以使物体起动所需要的力应大于某一最小的力。总之,包含摩擦力在内的平衡问题,物体维持静止或起动需要的动力的大小是允许在一定范围内的,只有当维持匀速运动时,外力才需确定的数值。
②由于滑动摩擦力F= ,要特别注意题目中正压力的大小的分析和计算,防止出现错误。
例2 重力为G的物体A受到与竖直方向成 角的外力 F后,静止在竖直墙面上,如图1-2所示,试求墙对物体A的静摩擦力。
分析与解答 这是物体在静摩擦力作用下平衡问题。首先确定研究对象,对研究对象进行受力分析,画出受力图。A受竖直向下的重力G,外力F,墙对A水平向右的支持力(弹力)N,以及还可能有静摩擦力 。这里对静摩擦力的有无及方向的判断是极其重要的。物体之间有相对运动趋势时,它们之间就有静摩擦力;物体间没有相对运动趋势时,它们之间就没有静摩擦力。可以假设接触面是光滑的,若不会相对运动,物体将不受静摩擦力,若有相对运动就有静摩擦力。(注意:这种假设的方法在研究物理问题时是常用方法,也是很重要的方法。)具体到这个题目,在竖直方向物体A受重力G以及外力F的竖直分量,即 。当接触面光滑, 时,物体能保持静止;当 时,物体A有向下运动的趋势,那么A应受到向上的静摩擦力;当 时,物体A则有向上运动的趋势,受到的静摩擦力的方向向下,因此应分三种情况说明。
从这里可以看出,由于静摩擦力方向能够改变,数值也有一定的变动范围,滑动摩擦力虽有确定数值,但方向则随相对滑动的方向而改变,因此,讨论使物体维持某一状态所需的外力F的许可范围和大小是很重要的。何时用等号,何时用不等号,必须十分注意。
(3)弹性力作用下的平衡问题
例3 如图1-3所示,一个重力为 的小环套在竖直的半径为 的光滑大圆环上,一劲度系数为k,自然长度为L(L<2r)弹簧的一端固定在小环上,另一端固定在大圆环的最高点A。当小环静止时,略去弹簧的自重和小环与大圆环间的摩擦。求弹簧与竖直方向之间的夹角
分析 选取小环为研究对象,孤立它进行受力情况分析:小环受重力 、大圆环沿半径方向的支持力N、弹簧对它的拉力F的作用,显然,
解法1 运用正交分解法。如图1-4所示,选取坐标系,以小环所在位置为坐标原点,过原点沿水平方向为 轴,沿竖直方向为 轴。
解得
解法2 用相似比法。若物体在三个力F1、F2、F3作用下处于平衡状态,这三个力必组成首尾相连的三角形F1、F2、F3,题述中恰有三角形AO 与它相似,则必有对应边成比例。
(4)在电场、磁场中的平衡
例4 如图1-5所示,匀强电场方向向右,匀强磁场方向垂直于纸面向里,一质量为 带电量为q的微粒以速度 与磁场垂直、与电场成45?角射入复合场中,恰能做匀速直线运动,求电场强度E的大小,磁感强度B的大小。
解析 由于带电粒子所受洛仑兹力与 垂直,电场力方向与电场线平行,知粒子必须还受重力才能做匀速直线运动。假设粒子带负电受电场力水平向左,则它受洛仑兹力 就应斜向右下与 垂直,这样粒子不能做匀速直线运动,所以粒子应带正电,画出受力分析图根据合外力为零可得,
(1) (2)
由(1)式得 ,由(1),(2)得
(5)动态收尾平衡问题
例5 如图1-6所示,AB、CD是两根足够长的固定平行金属导轨,两导轨间距离为 ,导轨平面与水平面的夹角为 。在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感强度为B。在导轨的A、C端连接一个阻值为R的电阻。一根垂直于导轨放置的金属棒 ,质量为 ,从静止开始沿导轨下滑。求 棒的最大速度。(已知 和导轨间的动摩擦因数为 ,导轨和金属棒的电阻不计)
解析 本题的研究对象为 棒,画出 棒的平面受力图,如图1-7。 棒所受安培力F沿斜面向上,大小为 ,则 棒下滑的加速度
。
棒由静止开始下滑,速度 不断增大,安培力F也增大,加速度 减小。当 =0时达到稳定状态,此后 棒做匀速运动,速度达最大。
。
解得 棒的最大速度
。
例6 图1-8是磁流体发电机工作原理图。磁流体发电机由燃烧室(O)、发电通道(E)和偏转磁场(B)组成。在2500K以上的高温下,燃料与氧化剂在燃烧室混合、燃烧后,电离为正负离子(即等离子体),并以每秒几百米的高速喷入磁场,在洛仑兹力的作用下,正负离子分别向上、下极板偏转,两极板因聚积正负电荷而产生静电场。这时等离子体同时受到方向相反的洛仑兹力( )与电场力(F)的作用,当F= 时,离子匀速穿过磁场,两极板电势差达到最大值,即为电源的电动势。设两板间距为d,板间磁场的磁感强度为B,等离子体速度为 ,负载电阻为R,电源内阻不计,通道截面是边长为d的正方形,试求:
(1)磁流体发电机的电动势 ?
(2)发电通道两端的压强差 ?
解析 根据两板电势差最大值的条件
所以,磁流发电机的电动势为
设电源内阻不计,通道横截面边长等于 的正方形,且入口处压强为 ,出口处的压强为 ;当开关S闭合后,发电机电功率为
根据能量的转化和守恒定律有
所以,通道两端压强差为
(6)共点的三力平衡的特征规律
例7 图1-9中重物的质量为 ,轻细线AO和BO的A、B端是固定的,平衡时AD是水平的,BO与水平的夹角为 。AO的拉力F1和BO的拉力F2的大小是:
A、 B、
C、 D、
解析 如图1-10,三根细绳在O点共点,取O点(结点)为研究对象,分析O点受力如图1-10。O点受到AO绳的拉力F1、BO绳的拉力F2以及重物对它的拉力T三个力的作用。
图1-10(a)选取合成法进行研究,将F1、F2合成,得到合力F,由平衡条件知:
则:
图1-10(b)选取分解法进行研究,将F2分解成互相垂直的两个分力 、 ,由平衡条件知:
则:
问题:若BO绳的方向不变,则细线AO与BO绳的方向成几度角时,细线AO的拉力最小?
结论:共点的三力平衡时,若有一个力的大小和方向都不变,另一个力的方向不变,则第三个力一定存在着最小值。
(7)动中有静,静中有动问题
如图1-11所示,质量为M的木箱放在水平面上,木箱中的立杆上着一个质量为 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的二分之一,则在小球下滑的过程中,木箱对地面的压力为 。因为球加速下滑时,杆受向上的摩擦力 根据第二定律有 ,所以 。对木箱进行受力分析有:重力 、地面支持力N、及球对杆向下的摩擦力 。由平衡条件有 。
2、电磁学中的平衡
(1)电桥平衡
若没有R,则R1和R2串联后与R3和R4串联后再并联
设通过R1的电流为I1,通过R3的电流I2
如有:I1R1=I2R3,I1R2=I2R4 则R两端电势差为0所以R中的电流为0,即电桥平衡。
(2)静电平衡
例8 一金属球,原来不带电。现沿球的直径的延长线放置一均匀带电的细杆MN,如图1-12所示。金属球上感应电荷产生的电场在球内直径上 、 、 三点的场强大小分别为 、 、 ,三者相比,
A、 最大 B、 最大 C、 最大 D、 = =
解析:
当金属球在带电杆激发的电场中达到以静电平衡时,其内部的场强为0,即细杆在 、 、 产生的场强与金属球上的感应电荷在 、 、 产生的场强大小相等,方向相反,故答案C正确。
3、热平衡问题
例9 家电电热驱蚊器中电热部分的主要元件是PTC,它是由钛酸钡等半导体材料制成的电阻器,其电阻率 与温度 的个关系图象如图1-13。电热驱蚊器的原理是:通电后电阻器开始发热,温度上升,使药片散发出驱蚊药,当电热器产生的热与向外散发的热平衡时,温度达到一个稳定值。由图象可以判定:通电后,PTC电阻器的功率变化情况是 ,稳定时的温度应取 区间的某一值。
分析 通电后应认为电压U不变。随着温度的升高,在(0~t1)范围内,电阻率随温度的升高而减小,因此电阻减小,电功率增大,驱蚊器温度持续上升;在(t1~t2)范围内,电阻率随温度的升高而增大,因此电阻增大,电功率减小。当电热器产生的热与向外散发的热平衡时,温度、电阻、电功率都稳定在某一值。
解答 功率变化是先增大后减小,最后稳定在某一值。这时温度应在t1~t2间。
第二讲 匀变速运动
一、特别提示:
1、匀变速运动是加速度恒定不变的运动,从运动轨迹来看可以分为匀变速直线运动和匀变速曲线运动。
2、从动力学上看,物体做匀变速运动的条件是物体受到大小和方向都不变的恒力的作用。匀变速运动的加速度由牛顿第二定律决定。
3、原来静止的物体受到恒力的作用,物体将向受力的方向做匀加速直线运动;物体受到和初速度方向相同的恒力,物体将做匀速直线运动;物体受到和初速度方向相反的恒力,物体将做匀减速直线运动;若所受到的恒力方向与初速度方向有一定的夹角,物体就做匀变速曲线运动。
二、典型例题:
例1 气球上吊一重物,以速度 从地面匀速竖直上升,经过时间t重物落回地面。不计空气对物体的阻力,重力离开气球时离地面的高度为多少。
解 方法1:设重物离开气球时的高度为 ,对于离开气球后的运动过程,可列下面方程: ,其中(-hx表示)向下的位移 , 为匀速运动的时间, 为竖直上抛过程的时间,解方程得: ,于是,离开气球时的离地高度可在匀速上升过程中求得,为:
方法2:将重物的运动看成全程做匀速直线运动与离开气球后做自由落体运动的合运动。显然总位移等于零,所以:
解得:
评析 通过以上两种方法的比较,更深入理解位移规律及灵活运用运动的合成可以使解题过程更简捷。
例2 两小球以95m长的细线相连。两球从同一地点自由下落,其中一球先下落1s另一球才开始下落。问后一球下落几秒线才被拉直?
解 方法1:“线被拉直”指的是两球发生的相对位移大小等于线长,应将两球的运动联系起来解,设后球下落时间为ts,则先下落小球运动时间为(t+1)s,根据位移关系有:
解得:t=9s
方法2:若以后球为参照物,当后球出发时前球的运动速度为 。以后两球速度发生相同的改变,即前一球相对后一球的速度始终为 ,此时线已被拉长:
线被拉直可看成前一球相对后一球做匀速直线运动发生了位移:
∴
评析 解决双体或多体问题要善于寻找对象之间的运动联系。解决问题要会从不同的角度来进行研究,如本题变换参照系进行求解。
例3 如图2-1所示,两个相对斜面的倾角分别为37°和53°,在斜面顶点把两个小球以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上。若不计空气阻力,则A、B两个小球的运动时间之比为( )
A、1:1 B、4:3 C、16:9 D\9:16
解 由平抛运动的位移规律可行:
∵ ∴
∴
故D选项正确。
评析 灵活运用平抛运动的位移规律解题,是基本方法之一。应用时必须明确各量的物理意义,不能盲目套用公式。
例4 从空中同一地点沿水平方向同时抛出两个小球,它们的初速度方向相反、大小分别为 ,求经过多长时间两小球速度方向间的夹角为90°?
解 经过时间t,两小球水平分速度 、 不变,竖直分速度都等于 ,如图2-2所示,t时刻小球1的速度 轴正向夹角 为
小球2的速度 轴正向夹角 为
由图可知
联立上述三式得
评析 弄清平抛运动的性质与平抛运动的速度变化规律是解决本题的关键。
例5 如图2-3所示,一带电粒子以竖直向上的初速度 ,自A处进入电场强度为E、方向水平向右的匀强电场,它受到的电场力恰与重力大小相等。当粒子到达图中B处时,速度大小仍为 ,但方向变为水平向右,那么A、B之间的电势差等于多少?从A到B经历的时间为多长?
解 带电粒子从A→B的过程中,竖直分速度减小,水平分速度增大,表明带电粒子的重力不可忽略,且带正电荷,受电场力向右。依题意有
根据动能定理:
在竖直方向上做竖直上抛运动,则
解得: 。
∴
评析 当带电粒子在电场中的运动不是类平抛运动,而是较复杂的曲线运动时,可以把复杂的曲线运动分解到两个互相正交的简单的分运动来求解。
例6 如图2-4所示,让一价氢离子、一价氦离子和二价氦离子的混合物由静止经过同一加速电场加速,然后在同一偏转电场里偏转,它们是否会分成三股?请说明理由。
解 设带电粒子质量为 、电量为q,经过加速电场加速后,再进入偏转电场中发生偏转,最后射出。设加速电压为 U1,偏转电压为U2,偏转电极长为L,两极间距离为d,带电粒子由静止经加速电压加速,则U1q= , 。
带电粒子进入偏转电场中发生偏转,则水平方向上: ,
竖直方向上: 。
可见带电粒子射出时,沿竖直方向的偏移量 与带电粒子的质量 和电量q无关。而一价氢离子、一价氦离子和二价氦离子,它们仅质量或电量不相同,都经过相同的加速和偏转电场,故它们射出偏转电场时偏移量相同,因而不会分成三股,而是会聚为一束粒子射出。
评析 带电粒子在电场中具有加速作用和偏转作用。分析问题时,注意运动学、动力学、功和能等有关规律的综合运用。
第三讲 变加速运动
一、特别提示
所谓变加速运动,即加速度(大小或方向或两者同时)变化的运动,其轨迹可以是直线,也可以是曲线;从牛顿第二定律的角度来分析,即物体所受的合外力是变化的。
本章涉及的中学物理中几种典型的变加速运动如:简谐运动,圆周运动,带电粒子在电场、磁场和重力场等的复合场中的运动,原子核式结构模型中电子绕原子核的圆周运动等。故涉及到力学、电磁学及原子物理中的圆周运动问题。
二、典型例题
例1 一电子在如图3-1所示按正弦规律变化的外力作用下由静止释放,则物体将:
A、作往复性运动
B、t1时刻动能最大
C、一直朝某一方向运动
D、t1时刻加速度为负的最大。
评析 电子在如图所示的外力作用下运动,根据牛顿第二定律知,先向正方向作加速度增大的加速运动,历时t1;再向正方向作加速度减小的加速运动,历时(t2~t1);(0~t2)整段时间的速度一直在增大。紧接着在(t2~t3)的时间内,电子将向正方向作加速度增大的减速运动,历时(t3~t2);(t3~t4)的时间内,电子向正方向作加速度减小的减速运动,根据对称性可知,t4时刻的速度变为0(也可以按动量定理得,0~t4时间内合外力的冲量为0,冲量即图线和坐标轴围成的面积)。其中(0~t2)时间内加速度为正;(t2~t4)时间内加速度为负。正确答案为:C。
注意 公式 中F、 间的关系是瞬时对应关系,一段时间内可以是变力;而公式 或 只适用于匀变速运动,但在变加速运动中,也可以用之定性地讨论变加速运动速度及位移随时间的变化趋势。
上题中,如果F-t图是余弦曲线如图3-2所示,则情况又如何?
如果F-t图是余弦曲线,则答案为A、B。
例2 如图3-3所示,两个完全相同的小球 和 ,分别在光滑的水平面和浅凹形光滑曲面上滚过相同的水平距离,且始终不离开接触面。 球是由水平面运动到浅凹形光滑曲线面,再运动到水平面的,所用的时间分别为t1和t2,试比较t1、t2的大小关系:
A、t1>t2 B、t1=t2 C、t1<t2 D、无法判定
评析 小球滚下去的时候受到凹槽对它的支持力在水平向分力使之在水平方向作加速运动;而后滚上去的时候凹槽对它的支持力在水平方向分力使之在水平方向作减速运动,根据机械能守恒定律知,最后滚到水平面上时速度大小与原来相等。故 小球在整个过程中水平方向平均速度大,水平距离一样,则 所用时间短。答案:A。
例3 如图3-4所示,轻弹簧的一端固定在地面上,另一端与木块B相连。木块A放在B上。两木块质量均为 ,竖直向下的力F作用在A上,A、B均静止,问:
(1)将力F瞬间撤去后,A、B共同运动到最高点,此时B对A的弹力多大?
(2)要使A、B不会分开、力F应满足什么条件?
评析 (1)如果撤去外力后,A、B在整个运动过程中互不分离,则系统在竖直向上作简揩运动,最低点和最高点关于平衡位置对称,如图3-5所示,设弹簧自然长度为 ,A、B放在弹簧上面不外加压力F且系统平衡时,如果弹簧压至O点,压缩量为b,则: 。外加压力F后等系统又处于平衡时,设弹簧又压缩了A,则: ,即: 。
当撤去外力F后,系统将以O点的中心,以A为振幅在竖直平面内上下作简谐运动。在最低点: ,方向向上,利用牛顿第二定律知,该瞬间加速度: ,方向向上;按对称性知系统在最高点时: ,方向向下。
此时以B为研究对象进行受力分析,如图3-6所示,按牛顿第二定律得:
(2)A、B未分离时,加速度是一样的,且A、B间有弹力,同时最高点最容易分离。分离的临界条件是: (或者:在最高点两者恰好分离时对A有: ,表明在最高点弹簧处于自然长度时将要开始分离,即只要: 时A、B将分离)。所以要使A、B不分离,必须: 。
例4 如图3-7所示,在空间存在水平方向的匀强磁场(图中未画出)和方向竖直向上的匀强电场(图中已画出),电场强度为E,磁感强度为B。在某点由静止释放一个带电液滴 ,它运动到最低点恰与一个原来处于静止状态的带电液滴b相撞,撞后两液滴合为一体,并沿水平方向做匀速直线运动,如图所示,已知 的质量为b的2倍, 的带电量是b的4倍(设 、b间静电力可忽略)。
(1)试判断 、b液滴分别带何种电荷?
(2)求当 、b液滴相撞合为一体后,沿水平方向做匀速直线的速度 及磁场的方向;
(3)求两液滴初始位置的高度差 。
评析 (1)设b质量为 ,则 带电量为4q,因为如果 带正电, 要向下偏转,则必须: ;而对b原来必须受力平衡,则: 。前后相矛盾,表明 带负电,b带正电。
(2)设 为 与b相撞前 的速度, 下落的过程中重力、电场力做正功,由动能定理有: 。由于b原来处于静止状态: 。
由以上两式可得:
、b相撞的瞬间动量守恒: 。得
而电荷守恒,故:
、b碰撞后粘在一起做匀速直线运动,按平衡条件得: ,则: 。所以:
例5 如图3-8所示,一单匝矩形线圈边长分别为 、b,电阻为R,质量为m,从距离有界磁场边界 高处由静止释放,试讨论并定性作出线圈进入磁场过程中感应电流随线圈下落高度的可能变化规律。
评析 线圈下落高度时速度为:
下边刚进入磁场时切割磁感线产生的感应电动势: 。产生的感应电流:I= ,受到的安培力:
讨论 (1)如果 ,即: ,则:线圈将匀速进入磁场,此时: (变化规律如图3-9所示)
(2)如果 ,表明 较小,则:线圈加速进入磁场,但随着 有三种可能:
①线圈全部进入磁场时还未达到稳定电流I0(变化规律如图3-10所示)
②线圈刚全部进入磁场时达到稳定电流I0(变化规律如图3-11所示)
③线圈未全部进磁场时已达到稳定电流I0(变化规律如图3-12所示)
(3)如果 ,则:线圈减速进入磁场,但随着 ,故线圈将作 减小的减速运动。
有三种可能:
①线圈全部进入磁场时还未达到稳定电流I0(变化规律如图3-13所示)
②线圈刚全部进入磁场时达到稳定电流I0(变化规律如图3-14所示)
③线圈未全部进入磁场时已达到稳定电流I0(变化规律如图3-15所示)
例6 光从液面到空气时的临界角C为45°,如图3-16所示,液面上有一点光源S发出一束光垂直入射到水平放置于液体中且到液面的距离为d的平面镜M上,当平面镜M绕垂直过中心O的轴以角速度 做逆时针匀速转动时,观察者发现水面上有一光斑掠过,则观察者们观察到的光斑的光斑在水面上掠过的最大速度为多少?
评析 本题涉及平面镜的反射及全反射现象,需综合运用反射定律、速度的合成与分解、线速度与角速度的关系等知识求解,确定光斑掠移速度的极值点及其与平面镜转动角速度间的关系,是求解本例的关键。
设平面镜转过 角时,光线反射到水面上的P点,光斑速度为 ,如图3-17可知: ,而:
故: , ,而光从液体到空气的临界角为C,所以当 时达到最大值 ,即:
例7 如图3-18所示为一单摆的共振曲线,则该单摆的摆长约为多少?共振时单摆的振幅多大?共振时摆球简谐运动的最大加速度和最大速度大小各为多少?( 取10m/s2)
评析 这是一道根据共振曲线所给信息和单摆振动规律进行推理和综合分析的题目,本题涉及到的知识点有受迫振动、共振的概念和规律、单摆摆球做简谐运动及固有周期、频率、能量的概念和规律等。由题意知,当单摆共振时频率 ,即: ,振幅A=8cm=0.08m,由 得:
如图3-19所示,摆能达到的最大偏角 的情况下,共振时: ,(其中 以弧度为单位,当 很小时, ,弦A近似为弧长。)所以: 。根据单摆运动过程中机械能守恒可得: 。其中:
例8 已知物体从地球上的逃逸速度(第二宇宙速度) ,其中G、ME、RE分别是引力常量、地球的质量和半径。已知G=6.7×10-11N?m2/kg2,c=3.0×108m/s,求下列问题:(1)逃逸速度大于真空中光速的天体叫做黑洞,设某黑洞的质量等于太阳的质量M=2.0×1030kg,求它的可能最大半径(这个半径叫Schwarhid半径);(2)在目前天文观测范围内,物质的平均密度为10-27kg/m3,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度c,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大?(最后结果保留两位有效数字)
解析 (1)由题目所提供的信息可知,任何天体均存在其所对应的逃逸速度 ,其中M、R为天体的质量和半径,对于黑洞模型来说,其逃逸速度大于真空中的光速,即 ,所以:
即质量为 kg的黑洞的最大半径为 (m)
(2)把宇宙视为一普通天体,则其质量为 ,其中R为宇宙的半径, 为宇宙的密度,则宇宙所对应的逃逸速度为 ,由于宇宙密度使得其逃逸速度大于光速c。即: 。则由以上三式可得: ,合4.2×1010光年。即宇宙的半径至少为4.2×1010光年。
电动机的最大输出功率为
可用于
物理压强浮力 的考点 重点是什么 能不能总结一下 谢了
绳子中点连接水泥桩一侧与司机手中的绳子构成合力,两力在垂直于汽车到绳子中点的坐标轴上的分力平衡,可以得出绳子中点到水泥桩这一段绳子的力,分解这个力和司机的拉力,两者在坐标纵轴上的和就是汽车的受力。
画不了图,你想一下三力平衡的解法就行
重点、难点:
1. 浮力:浸在液体或气体中的物体,受到液体或气体对它的作用力,浮力的方向竖直向上。
2. 阿基米德原理:浸入液体里的物体受到液体向上的浮力。浮力的大小等于物体排开液体的重力。F浮=G排。
3. 物体的浮沉:浸没在液体中的物体
当F浮<G物 下沉
当F浮=G物 悬浮
当F浮>G物 上浮
4. 漂浮:物体一部分浸在液体中,另一部分在液面上方,此时浮力等于物重。
三. 知识点分析:
1. 浮力的产生原因:
浸在液体中的物体,如以正方体为例,它的左右、前后四个面在同一深度,所受的压力互相平衡。上、下两底面由于深度不同,则压强不同,下面的压强比上面的压强大,从而使物体受到的向上的压力比向下的压力大,这两个压力之差就形成了液体对物体的浮力。
2. 应用阿基米德定律应注意:
(1)浮力的大小只与物体所排开液体的体积及液体的密度有关,而与物体所在的深度无关。
(2)如果物体只有一部分浸在液体中,它所受的浮力的大小也等于被物体排开的液体的重量。
(3)阿基米德定律不仅适用于液体,也适用于气体。物体在气体中所受到的浮力大小,等于被物体排开的气体的重量。
3. 用阿基米德定律测密度:
(1)测固体密度:称出物体在空气中的重量,而后把物体完全浸在水中,称出物体在水中的重量,两次重量之差便是物体在水中所受浮力,根据阿基米德定律便可算出物体的密度。
(2)测液体密度,称出某一物体在空气中的重量、在水中的重量及被测液体中的重量。根据物体在水中重量与在空气中重量之差用阿基米德定律可算出物体的体积即排开被测液体的体积,根据物体在空气中的重量与在被测液体中的重量之差可以知道物体所排开的被测液体的重量,于是便可算出液体的密度。
4. 有关浮力问题的解题思路
浮力问题是力学的重点和难点。解决浮力问题时,要按照下列步骤进行:
(1)确定研究对象。一般情况下选择浸在液体中的物体为研究对象。
(2)分析物体受到的外力。主要是重力G(mg或ρ物gV物)、浮力F浮(ρ液gV排)、拉力、支持力、压力等。
(3)判定物体的运动状态。明确物体上浮、下沉、悬浮、漂浮等。
(4)写出各力的关系方程和由题目给出的辅助方程。如体积间的关系,质量密度之间的关系等。
(5)将上述方程联立求解。通常情况下,浮力问题用方程组解较为简便。
(6)对所得结果进行分析讨论。
典型例题
[例1] 在弹簧秤下挂一个物体。物体在空气中时,弹簧秤的示数为4牛;浸没在水中时,弹簧秤的示数为3牛,求该物体的密度。
分析:固体的密度ρ=m/V,浮力F浮=ρ液gV排,物重G=mg。如果根据物体受力平衡时各力的关系,物体全浸时V=V排的关系等,求出物体的质量m、体积V,便可确定物体的密度。
弹簧秤的示数表示秤对物体拉力的大小。物体在空气中时,可认为秤的示数为物体的重力;物体浸在水中时,可认为秤的示数为物重与浮力的差值。
解答:设物重为G,物体密度ρ、体积V、水的密度ρ水,弹簧秤两次示数F1=4牛,F2=3牛。
G=ρgV=F1 G-ρ水gV=F2
两式相减,得ρ水gV=F1-F2。此式与ρgV=F1相比,得
,
将F1、F2及ρ水=1.0×103千克/米3代入,可求出
[例2] 将密度为0.9×103千克/米3的物体,放进食盐的水溶液中,物体有的体积露出液面,求:
(1)食盐水的密度是多大?
(2)若将物体放入水中,露出水面的部分是总体积的十分之几?
分析:把物体放入盐水中,有的体积露出液面,那么物体体积的浸入盐水中,由于物体漂浮在盐水液面,从受力情况看,此时应满足:所受浮力与该物体的重量G相平衡。由阿基米德定律: 而
同理,将这个物体放入水中,设露出水面部分的体积为总体积的,此时该物体所受浮力应为,同样应满足。这样便可求出露出水面部分在总体积中所占的比例。
解答:(1)物体排开盐水的体积
(2)设露出水面部分的体积为总体积的
即露出水面部分为总体积的
[例3] 如图所示,体积不同、重力不同的A、B两个物体浸在水中。用绳系住A物,拉力为F时A物静止。用力F压B物,B物静止。若将A、B两物系在一起放入水中,它们将( )
A. 上浮 B. 下沉 C. 悬浮 D. 无法判定
分析:A物平衡,有GA=F+FA。B物静止,有GB+F=FB。
将A、B二物系在一起,重力不变,仍为GA、GB。两物系在一起放入水中,全浸时浮力为FA+FB。分析GA+GB与FA+FB的关系。
将A、B二物平衡时的关系式相加,得GA+GB+F=F+FA+FB
可知GA+GB=FA+FB,两物恰好悬浮在水中。选项C正确。
解答:C
[例4] 如图所示,在烧杯中漂浮着一块冰,冰中夹着一小块石子。当冰完全熔化为水时,水面将如何变化?
分析与解答:
冰化成水,原来冰所排开水的体积被水占据,只要分析清楚冰未化成水前占有的体积V1、冰化成水的体积V2之间的关系,即可得知水面的变化情况。若V1=V2,水面不动;V1<V2水面上升;V1>V2水面下降。
如果水面漂浮的是纯净的冰块,它的重力G=ρ冰gV,排开水的体积为V1,有ρ冰gV=ρ水gV1;冰化为水后,水的重力等于冰的重力,有ρ冰gV=ρ水gV2。可以看出V1=V2。冰化为水后水面既不上升也不下降,液面高度不变。
如果冰中夹杂一小块石子,在漂浮时有G冰+G石=ρ水gV1,或ρ冰gV+ρ石gV石=ρ水gV1;冰化成水后体积V2,即ρ冰gV=ρ水gV2。两式合并,得ρ水gV2+ρ石gV石=ρ水gV1;或ρ石V石=ρ水(V1-V2)。V1-V2是冰块漂浮时所占体积V1与冰化成水后体积之差。由于石子的密度ρ石比水的密度ρ水大,所以石子的体积V石比冰块化为水填充在原冰排开水的体积内差值V1-V2要小,所以液面会下降。
如果冰中夹有塑料等密度小于水的物体,情况就比较复杂了。若这些密度较小的物体被全浸在水中,水面将上升。若这些物体在冰化后漂浮在水面,或冰中有气泡,冰熔化后溢出水面,结果是水面的高度不发生变化。
[例5] 要打捞沉在水底的一个铁件,当铁件未露出水面时,起重机在匀速起吊的过程中,吊绳上承受的拉力是1.36×104牛。当铁件吊出水面后,匀速起吊时吊绳上承受的拉力是多少?(ρ铁=7.8×103千克/米3)
分析:铁件在未露出水面时,受到水的浮力,当铁件匀速上升时,拉力与浮力之和等于重力。铁件露出水面后匀速上升,拉力与重力平衡。如果不说明物体是实心还是空心,可先按实心求解,再根据给定条件判断这种看法是否正确。
解答:设铁件的体积为V,铁件在水中匀速上升时受到浮力F浮=ρ水gV、重力G=ρ铁gV、拉力F1,有F1+ρ水gV=ρ铁Gv
铁件出水后,受到拉力F2,重力G,匀速上升时F2=G=ρ铁gV,将上面结果代入,有
牛
说明:浸在液体中的物体受到液体向上的浮力,所以提起液体中的物体较为省力。如提在液体中的物体时用力F1、提在空气中的同一物体F2,若物体均保持静止不动,则F2>F1,且F2-F1=F浮,F浮为物体到液体的浮力。
我们可以用弹簧秤测物体的重力、物体放在液体中的“重力”,两者之差为浮力。将后一个重力加引号,是因为这个不等于重力,它等于重力与浮力的差。
一般说来,计算物体所受浮力的大小时,应当明确物体是实心的还是空心的。质量相同的实心物体和空心物体放在液体中时,它们排开液体的体积不同,受到浮力的大小不同。如果题目未明确物体是实心的还是空心的,按情理分析可能是实心的物体(如本题中的铁件),可以先假定该物体是实心物体,得到结果后再考虑是否假设错误。
[例6] 有一体积为1分米3的木块,质量为0.6千克。
(1)如果木块漂浮在水面上,如图(a)所示。这时木块受到的浮力有多大?
(2)如果在木块上放一铁块,这时木块正好全部没入水面下。如图(b)所示,则铁块的重力应为多少牛?
分析:浸在水中的木块受到水的浮力,浮力的大小等于木块排开水的重力。讨论木块的上浮、下沉、静止时,必须分析木块受到的各种力。
解答:(1)木块漂浮时,它受到的合力为零。此时木块受到的力有重力和浮力,二力大小相等方向相反。
木块受到的重力为G=ρ水gV=mg,由m=0.6千克,g=9.8牛/千克,得知木块的重力G=5.88牛。
木块受到的浮力大小为F浮=G=5.88牛
(2)根据题意,木块恰好全部没入水面,浸入水中的体积V排=1分米3=10-3米3。浮力大小为F’浮=ρ水gV排=103千克/米3×9.8牛/千克×10-3米3=9.8牛。
木块受到重力G,重力的大小不变,与木块漂浮时相同,G=5.88牛。
木块还受到铁块向下的压力,压力F的大小等于铁块的重力G铁。
木块在压力、浮力、重力作用下平衡,有F’浮=F+G,F=F’浮-G=9.8牛-5.88牛=3.92牛。
铁块的重力为G铁=F=3.92牛。
说明:应当根据物体所受到的力分析其运动情况。通常情况下,物体浸在水中时,受到的作用力有重力、浮力,有时还有其他物体施加的压力或拉力。如果物体静止(或匀速运动),则合力为零;如果物体上浮或下沉,合力就不为零,合力方向与物体上浮或下沉方向相同。反过来,由合力方向、合力是否为零,可判定物体是否上浮、下沉或静止不动。 求解漂浮物(如船)的最大承重等问题,也要用到本题所用的力平衡方程。
[例7] 一铜块A放在木块上时,木块刚好全部浸入水中,若把与A同体积的合金块B挂于同一木块之下,木块也刚好全部浸入水中,试求合金块的密度。(铜的密度为8.9×103千克/米3)
分析:本题叙述了两种情况:铜块A放在木块上,木块刚好全部没入水中;合金块B挂在木块下(也在水中),木块也刚好没入水中。两种情况下,木块都保持静止。可根据物体静止时合力为零的规律,列出联立方程求解。
解答:铜块A压木块时,木块刚好全部浸入水中。木块受到重力G、浮力F及铜块压力F1,三力平衡F=G+F1
合金块B在木块下立方拉木块,木块也刚好全部没入水中。木块受到重力G、浮力F及合金块的拉力F2,三力平衡F=G+F2
铜块A对木块的压力与它的重力相等,即F1=ρ铜gV铜。
合金块B在水中,受到木块拉力F’2、重力ρ合gV合、浮力ρ水gV合,这三个力也平衡,有ρ水gV合+F’2=ρ合gV合
木块对合金块的拉力F’2、合金块对木块的拉力F2是一对作用力、反作用力,它们的大小相等、方向相反,有F2=F’2=ρ合gV合-ρ水gV合
将上述四个方程联立,得到ρ铜gV铜=ρ合gV合-ρ水gV合
因铜块、合金块体积相同,V铜=V合,所以ρ合=ρ水+ρ铜=103千克/米3+8.9×103千克/米3=9.9×103千克/米3。
说明:解决浮力问题,大多用到合力为零、物体平衡的规律。有时,可通过分析,较简便地得到结论。例如,可以从木块分别受到铜块压力F1、合金块拉力F2,效果相同,直接得到F1=F2的结论。
[例8] 如图所示,水面上漂浮一个木块。在木块上放一个M=4千克的物体,木块正好全部没入水中。若在木块下挂一个密度为5×103千克/米3的合金块,木块悬浮在水中,求合金块的质量。
分析:木块浸在水中,受到水的浮力。若在木块上方放置物体,木块受到浮力、重力和物体的压力平衡。木块下挂一个物体,木块受到浮力、重力和下方物体的拉力平衡。
解答:
解法一:在木块上放物体M时,木块漂浮,在重力G物、浮力ρ水gV木、压力Mg三力作用下平衡,有F浮=G物+Mg (1)
在木块下挂物体m时,木块悬浮。由于木块全浸在水中,所以浮力仍为ρ水gV木。木块在浮力F浮、重力G物、m对木块的拉力f三力作用下平衡,有F浮=G物+f(2)
物体m也全浸在水中,受浮力、重力和拉力平衡。浮力F’浮=ρ水gV合,重力mg,拉力f,三力关系为f+F’浮=mg(3)
(1)、(2)两式联立,得Mg=f。代入(3)式得 Mg=mg-F’浮=mg-ρ水gV合
合金m的体积为,代入上式 ,
千克
木块下方挂的合金物体质量为5千克。
本文来自作者[景源来了]投稿,不代表溟宇号立场,如若转载,请注明出处:https://www.gumingyu.com/zixun/202508-16569.html
评论列表(3条)
我是溟宇号的签约作者“景源来了”
本文概览:C 解法一:采取相似三角形法对小圆环A受力分析,如图所示,FT2与FN的合力与FT1平衡,由矢量三角形与几何三角形相似, 可知 得 解法二:采用正交分解法建立如...
文章不错《三力平衡的解法_1》内容很有帮助